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ABSTRACT

In this paper, the effectiveness of two-point Explicit Group Successive
Over-Relaxation (EGSOR) iterative method in obtaining the approx-
imate solution of one-dimensional (1D) convection-diffusion equations
with the fourth-order implicit finite difference scheme is investigated.
For the fourth-order solution of the proposed problems, the combination
of second-order and fourth-order implicit finite difference approximation
equations have been used to derive the generated pentadiagonal linear
system. For comparison purposes, other point iterative methods which
are Gauss-Seidel (GS) and Successive Over-Relaxation (SOR) are also
included as control methods. Three numerical examples have been con-
sidered to access the efficiency of the proposed iterative method. Finally,
from the numerical results obtained, it can be concluded that the two-
point EGSOR iterative method shows superiority in terms of number of
iterations and execution time in comparison to the other iterative meth-
ods.

Keywords: Fourth-order finite difference, EGSOR iterative method,
Convection-diffusion equations.
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1. Introduction

Unsteady convection-diffusion equation is a parabolic type of partial differ-
ential equations in the case of unsteady transport equations. Various previ-
ous researchers have mentioned the importance of understanding the transport
phenomena, especially in the industry and engineering fields. In finding the
numerical solutions, recent researchers have actively shown interest in high-
order schemes. For instance, Ge et al. (2018) discussed the high-order compact
Alternating Direction Implicit (ADI) method to solve 3D unsteady convection-
diffusion equation. Meanwhile, Dai et al. (2016) and Sun and Li (2014) dis-
cussed the numerical solution of 2D unsteady convection-diffusion equation
using higher-order ADI with completed Richardson extrapolation method and
with combined compact difference (CCD) scheme respectively.

In this paper, we focus on the following linear one-dimensional convection-
diffusion equation with constant coefficients

∂U

∂t
+ α

∂U

∂x
= ε

∂2U

∂x2
, x ∈ [a, b], 0 < t ≤ T, (1)

subject to the initial and boundary conditions

U(x, 0) = f(x), a ≤ x ≤ b,
U(a, t) = g0(t), U(b, t) = g1(t), 0 ≤ x ≤ T ,

where α is the convection parameter and ε is the diffusion parameter.

Discretization of problem (1) will produce large and sparse linear systems
which is best to be solved using iterative methods. The early development of
these methods received the attention of researchers, such as Young (1954, 1971,
1972, 1976), Hackbusch (1994) and Saad (2003). In fact, Young (1954) has
introduced the Successive Over-Relaxation iterative method in order to improve
the convergence rate of the classical iterative methods. Due to the advantage
of the SOR point iterative method, Evans (1985) introduced the families of
block iterative methods, which further discussed by Evans and Sahimi (1989)
and Evans and Yousif (1990). Based on their findings on the efficiency of block
iterative methods, this paper investigates the effectiveness of two-point EGSOR
(2EGSOR) iterative method for solving problem (1) by using the fourth-order
implicit approximation equations. To do this, let us discretize problem (1) by
using the uniformly divided grid spacing which is assumed as

∆x = b−a
m = h, m = n+ 1, ∆t = T−0

M
(2)
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Figure 1 depicts the finite grid network that is used to guide us in the
formulation of the GS and SOR iterative methods which are applied onto each
interior node point until convergence is attained.

Figure 1: The distribution of uniform node points for the solution domain at m=8.

2. Formulation of Fourth-Order Implicit
Approximation Equation

Before constructing a fourth-order finite difference approximation equation
using implicit finite difference scheme, let us consider the second-order approx-
imation equation for problem (1) in general form as

a1Ui−1,j+1 + b1Ui,j+1 + c1Ui+1,j+1 = Fi,j (3)

where

a1 = −(γ∗0 + γ∗1 ), b1 = 1 + 2γ∗0 + γ∗2 , c1 = γ∗1 − γ∗0 , Fi,j = Ui,j .

and
γ∗0 = ε∆t

h2 , γ∗1 = α∆t
2h , γ∗2 = β∆t.

Meanwhile, the fourth-order approximation equation has been expressed in
general form as

a2Ui−2,j+1 + b2Ui−1,j+1 + c2Ui,j+1 + d2Ui+1,j+1 + e2Ui+2,j+1 = Fi,j (4)

where

a2 = γ0 + γ1, b2 = −(8γ1 + 16γ0), c2 = 1 + 30γ0 + γ2,
d2 = 8γ1 − 16γ0, e2 = γ0 − γ1, Fi,j = Ui,j .

and
γ∗0 = ε∆t

12h2 , γ∗1 = α∆t
12h , γ∗2 = β∆t.

Equations (3) and (4) can be visualised clearly in the form of computational
molecule as depicted in Figures 2 and 3 respectively.
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Figure 2: The second-order implicit computational molecule.

Figure 3: The fourth-order implicit computational molecule.

From Figures 2 and 3, illustrated clearly that the approximate values along
nodes i = 1 and i = m−1 are impossible to be obtained using the fourth-order
approximation equation (4) since some points are located in the exterior of the
solution domain (1). To deal with this matter, we applied the second-order
approximation equation (3) along the two node points. The combination of
equations (3) and (4) will generate sets of linear systems in matrix form at any
time level j + 1 as

AUj+1 = Fj (5)

where

A =



b1 c1
b2 c2 d2 e2

a2 b2 c2 d2 e2

. . . . . . . . . . . . . . .
a2 b2 c2 d2 e2

a2 b2 c2 d2

a1 b1



Uj+1 =


U1,j+1

U2,j+1

...
Um−2,j+1

Um−1,j+1

 ,Fj =


F1,j − a1U0,j+1

F2,j − a2U0,j+1

...
Fm−2,j − e2Um−1,j+1

Fm−1,j − c1Um,j+1


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3. Derivation of two-point EGSOR Iterative
Method

In order to investigate the effectiveness of the 2EGSOR iterative method
for solving problem (1) using the fourth-order finite difference approximation
equation, the SOR and GS iterative methods are assigned as the reference
methods.

3.1 Formulation of SOR Iterative Method

To derive the formulation of the SOR iterative method, we decomposed the
coefficient matrix A in equation (5) as

A = L+D + V (6)

where D is the diagonal, L is strictly lower triangular and V is strictly upper
triangular matrices of matrix A respectively. From equation (6), therefore the
SOR iterative scheme can generally be defined as follows Young (1954, 1971,
1972, 1976)

U(k+1)
j = (1− ω)U(k)

j + ω(D + L)−1(F− VU(k)
j ) (7)

where, ω represent the relaxation factor and U(k+1)
j is the unknown vector at

kth iteration. From equation (7), it is noted that the SOR iterative method
is equivalent to the GS iterative method at ω = 1 . Therefore, to ensure the
family of SOR iterative method accelerate faster, the optimal value of ω should
be set within the range of 1≤ω<2.

Thus, the SOR algorithm to solve convection-diffusion in problem (1) is as
summarized in Algorithm 1.

Algorithm 1. SOR algorithm

1. Initialized U(0)
j ← 0 and ε← 10−10.

2. Assign the optimal value ω,

3. For j = 1, 2, 3, ...,M, implement:

(a) Assign U(0)
j ← 0

(b) Solve linear system (5) iteratively by using equation (7)
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(c) Perform the convergence test, | U(k+1)
j − U(k)

j |≤ ε = 10−10. If yes,
go to step (d). Otherwise, repeat step (b).

(d) Check time level, j = M . If yes, go to step (iv). Otherwise, repeat
step (a).

4. Display approximate solutions.

3.2 Two-Point EGSOR Iterative Method

To derive the formulation of the two-point EGSOR iterative method, let us
consider a group of two points as depicted in Figure 4.

Figure 4: The distribution of uniform nodal points of 2EGSOR for m=8.

By taking similar finite grid network as in Figure 1, Figure 4 illustrates the
application of 2EGSOR iterative method which is onto each two-point block
until iterative convergence is achieved.

By considering second- and fourth-order finite difference approximation
equations (3) and (4), for the first block, this method can be generally ex-
pressed as [

b1 c1
b2 c2

] [
U1,j+1

U2,j+1

]
=

[
S1

S2

]
(8)

where
S1 = F1,j − a1U0,j+1

S2 = F2,j − a1U0,j+1 − d2U3,j+1 − e2U4,j+1

Meanwhile for i = 3, 7, . . . ,m− 3, other remaining two-point blocks can be
stated as [

c2 d2

b2 c2

] [
Ui,j+1

Ui+1,j+1

]
=

[
S3

S4

]
(9)

where
S3 = Fi,j − a2Ui−2,j+1 − b2Ui−1,j+1 − e2Ui+2,j+1

S4 = Fi+1,j − a2Ui−1,j+1 − d2Ui+2,j+1 − e2Ui+3,j+1
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Now, by determining the inverse of the coefficient matrix in equations (8)
and (9), the two-point EGSOR iterative method for the first block can be
generally shown as[

U1,j+1

U2,j+1

](k+1)

=
ω

| B |

[
c2 −c1
−b2 b1

] [
S1

S2

]
+ (1− ω)

[
U1,j+1

U2,j+1

](k)

(10)

where
| B |= c2b1 − c1b2.

Next, for the consecutive remaining blocks until i = m−3, can be generally
stated as[

Ui,j+1

Ui+1,j+1

](k+1)

=
ω

| C |

[
c2 −d2

−b2 c2

] [
S3

S4

]
+ (1− ω)

[
Ui,j+1

Ui+1,j+1

](k)

(11)

where
| C |= c22 − b2d2.

Thus, the 2EGSOR algorithm to solve convection-diffusion in problem (1)
is as summarized in Algorithm 2.

Algorithm 2. 2EGSOR algorithm

1. Initialized U(0)
j ← 0 and ε← 10−10.

2. Assign the optimal value ω,

3. For j = 1, 2, 3, ...,M, implement:

(a) Assign U(0)
j ← 0

(b) Solve linear system (5) iteratively by using equation (10) and (11)

(c) Perform the convergence test, | U(k+1)
j − U(k)

j |≤ ε = 10−10. If yes,
go to step (d). Otherwise, repeat step (b).

(d) Check time level, j = M . If yes, go to step (iv). Otherwise, repeat
step (a).

4. Display approximate solutions.
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4. Numerical Experiments

In this section, we tested linear equations of problem (1) with constant co-
efficients to analyse the performance of the 2EGSOR iterative method over the
other two iterative methods, namely SOR and GS iterative methods. Here,
three types of convection-diffusion equations (i.e. heat equation, convection-
dominated equations, and a convection-diffusion equation with similar coeffi-
cients) are presented in examples 1 to 3 respectively. Three factors which are
the number of iterations, execution time (seconds), and maximum absolute er-
ror are measured as comparative analyses. For convergence test of the iterative
methods, the tolerance error value is set to ε = 10−10.

Example 1: Consider the following heat equation (Sulaiman et al., 2010)

∂U

∂t
+ α

∂U

∂x
= ε

∂2U

∂x2
, x ∈ [0, 1], 0 ≤ t ≤ T,

with α = 0.0, ε = 1.0, and subject to the initial condition

U(x, 0) = sin(πx) + 3sin(2πx).

the boundary condition and the exact solution to this problem is

U(x, t) = e−π
2tsin(πx) + 3e−4π2tsin(2πx), 0 ≤ t ≤ 1.

Example 2: Consider the following convection-dominated problem (Mittal
and Jain, 2012)

∂U

∂t
+ α

∂U

∂x
= ε

∂2U

∂x2
, x ∈ [0, 1], 0 ≤ t ≤ T,

with α = 3.5, ε = 0.022, and subject to the initial condition

U(x, 0) = exp(px).

The exact solution and boundary condition to this problem is

U(x, t) = exp(px+ qt), 0 ≤ t ≤ 1.

with p = 0.02854797991928 and q = −0.0999.

Example 3: Consider the following convection-diffusion equation (Mittal and
Jain, 2012)

∂U

∂t
+ α

∂U

∂x
= ε

∂2U

∂x2
, x ∈ [0, 1], 0 ≤ t ≤ T,
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with α = 0.1, ε = 0.02, and subject to the initial condition

U(x, 0) = exp(px),

The exact solution and boundary condition to this problem is

U(x, t) = exp(px+ qt), 0 ≤ t ≤ 1.

with p = 1.1771243444677 and q = −0.09.

Then, the numerical results of the three examples of convection-diffusion
problems are presented in Tables 1 to 3.

From the numerical experiment results in Tables 1 to 3, the percentage of
improvement between SOR and 2EGSOR in comparison to the GS iterative
method for examples 1 to 3 are summarized in Table 4.

Table 1: Comparison in terms of number of iterations.

Example Method Mesh Size
128 256 512 1024 2048

1
GS 1567 5216 16631 48516 92797
SOR 137 261 488 931 1742
2EGSOR 77 146 276 520 969

2
GS 53 271 1170 4649 17710
SOR 17 36 70 139 276
2EGSOR 14 30 61 119 234

3
GS 102 353 1295 4797 17733
SOR 50 96 187 367 718
2EGSOR 27 53 103 203 401

Table 2: Comparison in terms of execution time (seconds).

Example Method Mesh Size
128 256 512 1024 2048

1
GS 1.31 8.84 58.76 430.30 2907.01
SOR 0.09 0.33 1.28 4.96 19.28
2EGSOR 0.05 0.18 0.68 2.72 10.64

2
GS 0.05 0.28 2.30 17.75 133.89
SOR 0.04 0.05 0.16 0.61 2.41
2EGSOR 0.04 0.04 0.12 0.43 1.65

3
GS 0.06 0.36 2.59 19.04 140.79
SOR 0.05 0.11 0.41 1.59 6.17
2EGSOR 0.04 0.06 0.20 0.77 3.01
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Table 3: Comparison in terms of maximum absolute error.

Example Method Mesh Size
128 256 512 1024 2048

1
GS 2.9775e-05 2.9153e-05 2.6663e-05 1.6703e-05 2.3135e-05
SOR 2.9981e-05 2.9982e-05 2.9982e-05 2.9986e-05 2.9989e-05
2EGSOR 2.9982e-05 2.9983e-05 2.9986e-05 3.1022e-05 2.9987e-05

2
GS 1.2755e-05 1.2752e-05 1.2700e-05 1.2456e-05 1.1348e-05
SOR 1.2757e-05 1.2765e-05 1.2765e-05 1.2765e-05 1.2762e-05
2EGSOR 1.2757e-05 1.2765e-05 1.2766e-05 1.2766e-05 1.2765e-05

3
GS 8.4348e-05 8.4250e-05 8.3846e-05 8.2239e-05 7.5848e-05
SOR 8.4375e-05 8.4378e-05 8.4372e-05 8.4349e-05 8.4325e-05
2EGSOR 8.4376e-05 8.4378e-05 8.4375e-05 8.4372e-05 8.4365e-05

Table 4: The decrement percentage for the SOR and 2EGSOR iterative methods.

Example Method Number of Iterations (%) Execution Time (%)

1 SOR 91.26-98.12% 93.13-99.34%
2EGSOR 95.09-98.96% 96.18-99.63%

2 SOR 67.92-98.44% 20.00-98.20%
2EGSOR 73.58-98.68% 20.00-98.77%

3 SOR 50.98-95.95% 16.67-95.62%
2EGSOR 73.53-97.74% 33.33-97.86%

5. Conclusion

In this paper, we investigate the performance of 2EGSOR iterative method
in solving the one-dimensional convection-diffusion problems using the implicit
finite difference schemes in second-order as in equation (3) and fourth-order as
in equation (4). The numerical results depicted in Tables 1 to 3 shows that
the application of the 2EGSOR iterative method has reduced the number of
iterations and the execution time, better than SOR and GS iterative methods.
Therefore, it can be pointed out that the developed two-point EGSOR is able
to show substantial improvement in the number of iterations and execution
time in comparison to the other point iterative methods. For future work, this
study could be extended to investigate the performance of the proposed approx-
imation equation using half-sweep iteration concept as discussed by Abdullah
(1991), Akhir et al. (2011) and Dahalan et al. (2013).
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